Seismic facies analysis using machine learning
نویسندگان
چکیده
منابع مشابه
Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملSeismic Facies Characterization by Scale Analysis
Over the years, there has been an ongoing struggle to relate well-log and seismic data due to the inherent bandwidth limitation of seismic data, the problem of seismic amplitudes, and the apparent inability to delineate and characterize the transitions that can be linked to and held responsible for major reflection events and their signatures. By shifting focus to a scale invariant sharpness ch...
متن کاملSeismic facies characterization by monoscale analysis
Relating sedimentary records to seismic data is a major challenge. By shifting focus to a scale-invariant sharpness characterization for the reflectors, we develop an attribute that can capture and categorize the main reflector features, without being sensitive to amplitudes. Sharpness is defined by a scale exponent, which expresses singularity order and determines the reflection signature/wave...
متن کاملSupport Vector Machine-based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملFacies Classifications for Seismic Inversion
Identifying facies for classification for a seismic inversion project is an important step where one balances computational effort and the quality of the results. We propose a new measure to quantify the suitability of a given facies partition based on information theory. The results depend on a user-selected cutoff, and we propose a reasonable value for this constant. We also show the analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GEOPHYSICS
سال: 2018
ISSN: 0016-8033,1942-2156
DOI: 10.1190/geo2017-0595.1